3.1 Conjuntos.
 

Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos con letras minúsculas.
Intuitivamente, un conjunto es una colección o clase de objetos bien definidos. Estos objetos se llaman elementos o miembros del conjunto.
Si un objeto x es elemento de un conjunto A, se escribe:

x Î A.

que se puede leer también "x pertenece a A" o "x está en A". Si por el contrario, un objeto x no es elemento de un conjunto A, se escribe:

x Ï A.

Un conjunto se puede definir haciendo la presentación efectiva de cada uno de sus elementos, así el conjunto A cuyos elementos son 2, 3, 5, se escribe:

A = { 2, 3, 5}

Esto se conoce como expresión por extensión del conjunto.
Otra forma de definir un conjunto es enunciando una propiedad que permita seleccionar de un conjunto ya formado, aquellos que verifiquen dicha propiedad. Por ejemplo, dentro del conjunto de los números podemos seleccionar el conjunto B de los números pares, en este caso se emplea una letra, por lo general x, para representar un elemento cualquiera y se escribe:


B = { x / x es par}

lo que se lee: "B es el conjunto de los números x tales que x es par". Esta forma de definir un conjunto de llama por comprensión.


  3.1.1 Definiciones.
 

3.1.1.1 Igualdad de Conjuntos. El conjunto A es igual al conjunto B si ambos tienen los mismos elementos, es decir, si cada elemento de A es también elemento de B y recíprocamente. Luego, podemos escribir:

(A = B) Û (" x)(x Î A Û x Î B).

 

3.1.1.2 Subconjuntos. Si todo elemento de un conjunto A es también elemento de un conjunto B, entonces se dice que A es un subconjunto de B. Esta relación se denomina relación de inclusión y se denota como: A Ì B.
Simbólicamente esto se puede expresar así:


A Ì B Û (" x)(x Î A Þ x Î B)

Esta relación también se puede leer: "A está contenido en B", "A es una parte de B". Para expresar que A no está contenido en B, escribimos: A Ë B.
Con esta definición de subconjunto se puede dar de otra manera la definición de igualdad de dos conjuntos, así:


(A = B) Û (A Ì B) Ù (B Ì A)

Puesto que todo conjunto A es subconjuto de si mismo, se dirá que A es un subconjunto propio de B; si A es subconjuto de B y A no es igual a B. Más brevemente, A es subconjuto propio de B si A Ì B y A ¹ B. Esta situación puede representarse mediante un diagrama así:

3.1.1.3 Conjunto Universal. Es el conjunto de todos los elementos en discusión. También se le llama dominio de discusión o referencial.
El conjunto universal se designa con el símbolo 1.

Ejemplos

1. En geometría plana el conjunto universal es el de todos los puntos del plano.
2. En los estudios de población humana el conjunto universal estará formado por todos los seres humanos del mundo.


3.1.1.4 Conjunto Vacío. Es el conjunto que carece de elementos. Este conjunto se denotará por 0. Un conjunto vacío se puede definir mediante una propiedad que sea contradictoria, por ejemplo:
Sea A = {x / x2 = 4 Ù x es impar}.

3.1.1.5 Conjunto de Partes de un Conjunto. El conjunto de todos los subconjuntos de un conjunto A, se denomina conjunto de partes de A y se denota P (A).


En consecuencia,
x Î P(A) Û x Ì A
P(A) = {x / x Ì A}

3.1.2 Operaciones Fundamentales con Conjuntos.


3.1.2.1 Unión. La unión de los conjuntos A y B, es el conjunto de todos los elementos que pertenecen a A o a B o a ambos. Se denota la unión de A y B por A + B y se llama unión de A y B.


En consecuencia,
x Î ( A + B) Û x Î A Ú x Î B.



Entonces se puede expresar por comprensión este conjunto así:

A + B = {x / x Î A Ú x Î B }

Una interpretación gráfica de la unión de A y B es la siguiente:

En la gráfica la región rayada corresponde a la unión de A y B. Se presentan los conjuntos dentro de un rectángulo que representa el conjunto referencial del cual se seleccionan los conjuntos A y B.


3.1.2.2 Intersección. La intersección de dos conjuntos A y B es el conjunto de los elementos que son comunes a A y a B, esto es, aquellos que pertenecen a A y que también pertenecen a B. Se denota la intersección de A y B por A · B y se lee "A intersección B".

En consecuencia,

x Î A· B Û x Î A Ù x Î B.


El conjunto A· B está dado por:
A· B = { x / x Î A Ù x Î B }.

Gráficamente, una representación de A· B es:
 

La región rayada corresponde a A· B. Cuando A y B no tienen elementos comunes, se dice que son disjuntos.


3.1.2.3 Complemento. El complemento de un conjunto A es el conjunto de todos los elementos que no pertenecen a A, es decir, el conjunto de todos los elementos que están en el Universal y no están en A. El complemento de A se denota por A'.

En consecuencia,
x Î A' Û x Î 1 Ù x Ï A.


Gráficamente, su representación está dada por:

A' = {x / x Î 1 Ù x Ï A }.

3.1.3 Leyes del Álgebra de Conjuntos.

Si 1 designa al conjunto universal y 0 al conjunto vacío, las siguientes identidades son válidas en el álgebra de conjuntos para conjuntos arbitrarios X, Y, Z.



Leyes conmutativas

XY = YX               X + Y = Y + X.


Leyes asociativas

X(YZ) = (XY)Z               X + (Y + Z) = (X + Y) + Z.


Leyes distributivas

X(Y + Z) = XY + XZ               X + YZ = (X + Y) (X + Z).


Leyes de idempotencia

XX = X               X + X = X.


Leyes de complementación

XX' = 0               X + X' = 1.


Leyes de absorción

X (X + Y) = X               X + XY = X.


Leyes de D'Morgan

( XY)' = (X' + Y')               (X + Y )' = X'Y'.


Leyes con 0 y 1

X 1 = X               X + 0 = X.
X 0 = 0               X + 1 = 1.
0' = 1               1' = 0.


Ley de complemento doble

(X')' = X.


Es importante destacar la dualidad dada en estas leyes, es decir, si en cualquiera de las identidades, cada unión se reemplaza por una intersección, cada intersección por una unión, cada 0 por 1 y cada 1 por 0, la expresión resultante es también una identidad.



Ejercicios 3.1

1) Sean A, B, C, los siguientes conjuntos:
A = { {1,3}, {2,4,6}, {8,9}}
B = { 1,2,3,4,6,8,9}
C = { {1}, {3}, {2}, {4}, {6}, {8}, {9}}

- Es correcto decir que A = B = C ?. Explique.

- Para cada una de las siguientes expresiones; diga si es correcto o no.

{1,3} ÎA               {1,3} Ì B               {1} Î A               {1} Ì A


{1,3} Ì A               {1,3} Î C               {1} Î B               {1} Ì B

{1,3} Î B               {1,3} Ì C               {1} Î C               {1} Ì C

{{1}, {2}} Ì B               {{1}, {2}} Ì C               {{1,3} } Ì A.


2)Si A = {x}; B = {{x}}; ¿ Cuáles de las siguientes expresiones son correctas?

x Î A               {x} Ì A               {x} Î B               A Î B               {A} Ì B

x Î B               {x} Ì B               {{x}} Ì A               A Ì B               {A} = B.




3) Dados los siguientes conjuntos:

F: El conjunto de los números de cuatro cifras, donde dos al menos de dichas cifras son cero.

G: El conjunto de números de cuatro cifras, donde una al menos de dichas cifras es cero.

H: El conjunto de números de cuatro cifras, dos de las cuales son cero y las otras dos diferentes de cero.

Determine todas las posibles relaciones de inclusión que se pueden establecer entre los conjuntos F, G y H.


4) Sea A = {0,1,2,3} y B = {0, {0},3,5}




5) Sea A el conjunto de todos los números naturales que verifican la ecuación:
(x
- 2)(x + 1) = 0.
Sea B = {A, 1}, ¿ Cuáles de las siguientes expresiones son verdaderas?.

-1 Î A,               2 Î B,               1 Î A,               {2} Î B,               {2} Î A.


6) Sean:

X = {a, b, c, e, u, k, m, n, t, {a}, {x}, {y}, {c}}, considerado como conjunto referencial,
A = {{x}, {y}, a, b, u, {a}, t} y B = {c, {a}, {x}, {y}, m, t}.

Determinar A' y B'.


7) Sea A = {0, f }. En el espacio en blanco coloque los signos apropiados entre Î , Ï , Ì , Ë .

0 ____ P(A)                  {0, f } ____ P(A)                  {{f },f } ____ P(A)

{0} ____ A             {f } ____P(A)              {{f },0} ____P(A)

f ____ P(A)                   {{f }} ____P(A)            {{0},{f }} ____P(A)

f ____ A                 {0, f } ____ A

{f } ____ A             {{0}, 0} ____P(A).



8) Sean A = {0,{ 1,2}}; B = { 1,2}; C = {1, {f }}.

Determinar P(A), P(P(B)), P(C).


9) si A es el conjunto de números de dos cifras tales que la primera cifra es mayor que la segunda y B el conjunto de números de dos cifras tales que la primera cifra es menor que la segunda, expresar A + B y A· B.


10) Suponga que el conjunto universal es el conjunto de los números enteros positivos. Defina S, E y M así:

S: Conjunto de todos los enteros positivos menores o iguales a 6.

E: Conjunto de todos los enteros positivos pares.

M: Conjunto de todos los enteros positivos múltiplos de tres.

Escriba expresiones algebraicas simples en términos de S, E y M para los siguientes conjuntos:



11) Dar contraejemplos para los recíprocos de cada uno de los siguientes teoremas:



12) Aplicando leyes fundamentales para el álgebra de conjuntos simplifique las siguientes expresiones.(Cada expresión se reduce a un sólo símbolo).



13) Simplificar las siguientes expresiones, justificando cada paso.



14) Escriba cada una de las siguientes condiciones sobre los conjuntos X, Y y Z, sin hacer uso del símbolo "Ì ".

X'· Y Ì Z
X + Y' Ì Z.
X· Y' + X'· Y Ì Z + Y'
X Ì Y' Ì Z.


15) Encuentre una proposición equivalente en términos de inclusión para cada una de las siguientes condiciones sobre los conjuntos X, Y , Z y W.

( X' + Y )( Z + W' )' = 0
( X' + Y )( Z + W' ) = 0.
X + Y' + Z' + W' = 1
X· Y' + Z'· W = 0.