EJEMPLOS


EJEMPLO 1: Ecuaciones lineales.
a.
b.
c.

a, b y c son ejemplos de ecuaciones lineales en 2, 3 y 4 incógnitas respectivamente.




EJEMPLO 2: Ecuaciones que no son lineales.
a.
b.
c.
d.




EJEMPLO 3:
La ecuación lineal tiene como solución la pareja ordenada (5, 8) ya que 3(5) – 4 (8) = – 17.




EJEMPLO 4:
La ecuación lineal tiene como solución la cuadrupleta (2, -1, 0, 3).




EJEMPLO 5:
Dado el sistema de dos ecuaciones en dos variables
Las parejas de números (3, 0) y (– 1, 4) son soluciones puesto que:
3 + 0 = 3 – 1 + 4 = 3
2 (3) + 2 (0) = 6 2(– 1) + 2 (4) = 6




EJEMPLO 6:
Dado el sistema de tres incógnitas y dos ecuaciones, homogéneo


La tripleta de números (-2, 1, 1) es una solución del sistema.




EJEMPLO 7:
Resolver el siguiente sistema:


Solucion:Observar bien las operaciones en cada paso




El sistema equivalente total es:

y por lo tanto la solución del sistema es la tripleta (2, 0, -1).




EJEMPLO 8:
Usando la nueva representación resolvamos el sistema del ejemplo 7.

Resolver el siguiente sistema:


Solucion:
Observar bien las operaciones en cada paso




La matriz aumentada final corresponde al sistema:

y si consideramos la solución como una terna, la podemos escribir como (2, 0, -1).




EJEMPLO 9:
Resolver el siguiente sistema de ecuaciones


Solucion:
Observar bien las operaciones en cada paso


La matriz aumentada final corresponde al sistema equivalente:



Es decir

observando que x y y están completamente determinadas por z y que no hay ninguna restricción sobre z, vemos que todas las soluciones son de la forma x = -5 -1, y = -25 - 2, donde s es cualquier número real. El número s se llama parámetro. Una solución particular puede obtenerse asignando un valor al parámetro s; por ejemplo, si s = 0, obtenemos x = -2, y = -2 y z = 0.

Podemos verificar la solución reemplazando los valores de x, y y z en el sistema inicial. Si consideramos la solución como una terna, vemos que toda solución es de la forma.





EJEMPLO 10:
Resolver el siguiente sistema de ecuaciones


Solucion:
Observar bien las operaciones en cada paso


La matriz aumentada final corresponde al sistema equivalente:



En virtud de que la tercera ecuación es absurda, se concluye que el sistema no tiene solución.

Como vemos en los ejemplos 7, 9 y 10 un sistema de ecuaciones de ecuaciones lineales tiene solución única, infinitas soluciones o no tiene solución.




EJEMPLO 11:
Resolver el siguiente sistema de ecuaciones



Solucion:
Observar bien las operaciones en cada paso


La matriz aumentada final corresponde al sistema equivalente:



    ó    



Reemplazando x3 en las ecuaciones correspondientes a x1 y x2 obtenemos:

Las variables (o variable) de la cual dependen las demás variables se le asigna un parámetro podemos, tomando a x4 = t como parámetro, escribir el conjunto solución en la forma paramétrica:






EJEMPLO 12:
Resolver el siguiente sistema de ecuaciones


Solucion:
Observar bien las operaciones en cada paso



La matriz está ahora en forma escalonada, de modo que encontramos el sistema asociado equivalente:





Ejercicios

Sistemas de ecuaciones lineales

Observar los ejercicios Regresar a la unidad